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Consider estimating the covariance matrix 

Given n-dimensional random variable 

from N samples (or realizations). 
Maximium likelihood estimator. N = O(n) samples. 

Graphical lasso estimator. N = O(log(n)) samples, 
assuming sparse inverse covariance matrix 

log(n) factor optimal due to coupon collector effect. 
Assumption frequently valid in real-life applications. 



Graphical lasso most useful in high-dimensional settings 
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•  Shrinkage estimator, e.g. Markowitz portfolio 
Goal: minimize number of samples. 

•  Markov graphical models, e.g. in neuroscience 
Goal: impose sparsity on inverse covariance matrix. 



Graphical lasso most useful in high-dimensional settings 
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State-of-the-art solvers usually O(n3) time and O(n2) space 
•  GLASSO (Friedman et al. 2008) 
•  CVXOPT (Dahl et al. 2008) 
•  (BIG)-QUIC (Hsieh et al. 2013) 

We solved n = 200k in <70 minutes on a Macbook Air. 

BIG-QUIC solved n = 200k in 5 hours on 4 x 8-core CPUs 

This work. Solve graphical lasso in  

on p parallel processors, assuming modestly large λ and 
bounded degree chordal embedding 

Complexity motivates other estimators, e.g. EEGM (Yang et al. 2014). 



Review. Graphical lasso 
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Estimate the n x n covariance matrix 

from N samples. 

Approximate expection with average, obtain MLE 

Solve graphical lasso optimization problem 

Bottleneck is the solution of this problem. 



Review. Threshold and MDMC (Fattahi & Sojoudi 2017) 
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1. Estimate sparsity pattern. Soft-threshold in O(n2/p) time 
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Review. Threshold and MDMC (Fattahi & Sojoudi 2017) 
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2. Estimate parameters. Solve max-det matrix completion 

Compare with the original graphical lasso problem: 

Soft-thresholded MLE 

Original MLE Nonsmooth term 
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State-of-the-art solvers usually O(n3) time and O(n2) space 

If sparsity graph of Sλ is bounded degree chordal, then 
 O(n) time and O(n) space  

via recursive closed-form solution (Dahl et al. 2008) 

This is a self-concordant barrier function on the space 
of sparse matrices (Andersen et al. 2010) 

Use insights to solve MDMC in O(n) time and space. 

Our new bottleneck: 



Main contribution. Newton-CG for MDMC 
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1. Embed nonchordal sparsity graph G of Sλ within a 
chordal graph G-tilde.  



Main contribution. Newton-CG for MDMC 
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2. Pose as optimization problem over the fill-in 

Optimization problem over the cone of sparse 
semidefinite matrices. 

Extra edges added to 
to make graph chordal 

Most sparsity constraints 
show up here 

λ 



Main contribution. Newton-CG for MDMC 
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3. Solve the dual problem 

Edges added to 
to make graph chordal 

Self-concordant barrier 
on the cone of sparse 
matrices 

Self-concordance guarantees ε-accuracy in O(log log (1/ε)) 
Newton iterations. 

λ 



Main contribution. Newton-CG for MDMC 
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4. Solve Newton direction using conjugate gradients 

Main Theorem (Informal). CG converges to ε-
accuracy in O(log(1/ε)) iterations 

Each CG iteration costs O(n) time and O(n) memory. 
soft-O(1) CG iters. over soft-O(1) Newton iters. QED. 



Numerical results on banded graphs 
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•  Synthetic Θ=Σ-1 with banded sparsity pattern 
•  Off-diagonals [-1,+1], corrupted to zero with p=0.3 
•  Diagonals set to sum of off-diagonals plus one 
•  Solve MDMC on this sparsity pattern 

O(n) 

O(n2) O(n1.5) 



Numerical results on real-life graphs 
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•  Synthetic Θ=Σ-1 from real-life graphs. 
•  Off-diagonals [-1,+1], corrupted to zero with p=0.3 
•  Diagonals set to sum of off-diagonals plus one 
•  Estimate Σ from 5000 i.i.d. samples from N(0, Σ) 

O(n1.5) 
O(n2.5) 



Conclusions 

•  Graphical lasso estimates covariance matrix assuming 
that its inverse is sparse. Applications in finance and 
neuroscience. 

•  Nice theory, most useful in high-dimensional setting. 
•  This paper. Fast algorithm for graphical lasso 

–  O(n) time and space. 
•  Numerical results. Solve n = 200k problem in 70 

minutes on a laptop. 
•  Next steps. Benchmark statistical performance for 

recovering ground-truth.  
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Thank you! – Poster #1 
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