Large-scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion

Richard Y. Zhang ${ }^{1}$, Salar Fattahi ${ }^{1}$, Somayeh Sojoudi ${ }^{2}$
${ }^{1}$ Industrial Engineering and Operations Research
${ }^{2}$ Electrical Engineering \& Computer Sciences
University of California, Berkeley
\{ryz, fattahi, sojoudi\}@berkeley.edu

Given n-dimensional random variable

$$
X=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{T} \sim \text { Distribution }
$$

Consider estimating the covariance matrix

$$
\mu_{i}=\mathbb{E}\left[X_{i}\right], \quad \Sigma_{i, j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

from N samples (or realizations)

$$
\begin{aligned}
x^{(1)} & =\left[x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{n}^{(1)}\right]^{T}, \\
x^{(2)} & =\left[x_{1}^{(2)}, x_{2}^{(2)}, \ldots, x_{n}^{(2)}\right]^{T}, \\
x^{(3)} & =\left[x_{1}^{(3)}, x_{2}^{(3)}, \ldots, x_{n}^{(3)}\right]^{T}, \\
& \vdots \\
x^{(N)} & =\left[x_{1}^{(N)}, x_{2}^{(N)}, \ldots, x_{n}^{(N)}\right]^{T} .
\end{aligned}
$$

Zhang, Fattahi, Sojoudi. Large-scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion. ICML 2018.

Given n-dimensional random variable

$$
X=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{T} \sim \text { Distribution }
$$

Consider estimating the covariance matrix

$$
\mu_{i}=\mathbb{E}\left[X_{i}\right], \quad \Sigma_{i, j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

from N samples (or realizations).
Maximium likelihood estimator. $\mathrm{N}=\mathrm{O}(\mathrm{n})$ samples.
Graphical lasso estimator. $\mathrm{N}=\mathrm{O}(\log (\mathrm{n}))$ samples, assuming sparse inverse covariance matrix

$$
\Theta=\Sigma^{-1} \text { exists and contains } O(1) \text { nonzeros per column }
$$

Assumption frequently valid in real-life applications. $\log (\mathrm{n})$ factor optimal due to coupon collector effect.

Graphical lasso most useful in high-dimensional settings dimension $n \gg$ num. samples N.

- Shrinkage estimator, e.g. Markowitz portfolio Goal: minimize number of samples.

- Markov graphical models, e.g. in neuroscience

Goal: impose sparsity on inverse covariance matrix.

$$
\begin{gathered}
X=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{T} \sim N\left(\mu, \Theta^{-1}\right) . \\
\Theta_{i, j}=0 \quad \Longleftrightarrow \quad X_{i} \perp X_{j} \mid \text { rest }
\end{gathered}
$$

Graphical lasso most useful in high-dimensional settings dimension $n \quad>\quad$ num. samples N.

State-of-the-art solvers usually $O\left(n^{3}\right)$ time and $O\left(n^{2}\right)$ space

- GLASSO (Friedman et al. 2008)
- CVXOPT (Dahl et al. 2008)
- (BIG)-QUIC (Hsieh et al. 2013)

BIG-QUIC solved $n=200 \mathrm{k}$ in 5 hours on 4×8-core CPUs Complexity motivates other estimators, e.g. EEGM (Yang et al. 2014).

This work. Solve graphical lasso in

$$
O\left(n+n^{2} / p\right) \text { time and } O(n) \text { memory }
$$

on p parallel processors, assuming modestly large λ and bounded degree chordal embedding

We solved $\mathrm{n}=200 \mathrm{k}$ in <70 minutes on a Macbook Air.

Review. Graphical Iasso

Estimate the nx n covariance matrix

$$
\mu_{i}=\mathbb{E}\left[X_{i}\right], \quad \Sigma_{i, j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

from N samples.
Approximate expection with average, obtain MLE
$\bar{x}_{i}=\frac{1}{N} \sum_{k=1}^{N} x_{i}^{(k)}, \quad S=\frac{1}{N} \sum_{k=1}^{N}\left(x_{i}^{(k)}-\bar{x}_{i}\right)\left(x_{j}^{(k)}-\bar{x}_{j}\right)$,
Solve graphical lasso optimization problem
$\hat{\Theta}=\underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}(S \Theta)-\log \operatorname{det} \Theta+\lambda \sum_{i \neq j}\left|\Theta_{i, j}\right|$.
Bottleneck is the solution of this problem.

Review. Threshold and MDMC (Fattahi \& Sojoudi 2017)

$$
\bar{x}_{i}=\frac{1}{N} \sum_{k=1}^{N} x_{i}^{(k)}, \quad S=\frac{1}{N} \sum_{k=1}^{N}\left(x_{i}^{(k)}-\bar{x}_{i}\right)\left(x_{j}^{(k)}-\bar{x}_{j}\right),
$$

1. Estimate sparsity pattern. Soft-threshold in $\mathbf{O}\left(\mathrm{n}^{2} / \mathrm{p}\right)$ time

$$
\begin{aligned}
& \left\{\begin{array}{l}
S_{i, j} \\
S_{i, j}-\log \left(S_{i, j}\right) \cdot \lambda_{i, j} \mid
\end{array}\right. \\
& \left(S_{\lambda}\right)_{i, j}=\left\{S_{i, j}-\operatorname{sign}\left(S_{i, j}\right) \cdot \lambda_{i, j} \quad\left|S_{i, j}\right|>\lambda_{i, j}, \quad i \neq j\right. \\
& 0 \quad\left|S_{i, j}\right| \leq \lambda_{i, j}, \quad i \neq j
\end{aligned}
$$

Review. Threshold and MDMC (Fattahi \& Sojoudi 2017)
2. Estimate parameters. Solve max-det matrix completion

Compare with the original graphical lasso problem:
Original MLE
Nonsmooth term
$\hat{\Theta}=\underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}(\underline{S \Theta})-\log \operatorname{det} \Theta+\lambda \sum_{i \neq j}\left|\Theta_{i, j}\right|$.

Our new bottleneck:
$\underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta$
subject to $\Theta_{i, j}=0 \quad$ wherever $\left(S_{\lambda}\right)_{i, j}=0$
State-of-the-art solvers usually $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space
If sparsity graph of S_{λ} is bounded degree chordal, then $\mathrm{O}(\mathrm{n})$ time and $\mathrm{O}(\mathrm{n})$ space
via recursive closed-form solution (Dahl et al. 2008)

$$
f_{*}(C)=\min _{\Theta \succ 0}\left\{\operatorname{trace}(C \Theta)-\log \operatorname{det} \Theta: \Theta_{i, j}=0 \quad \forall(i, j) \notin G\right\}
$$

This is a self-concordant barrier function on the space of sparse matrices (Andersen et al. 2010)

$$
\mathbb{S}_{G}^{n}=\left\{\Theta \in \mathbb{S}^{n}: \Theta_{i, j}=0 \quad \forall(i, j) \notin G\right\}
$$

Use insights to solve MDMC in $\mathrm{O}(\mathrm{n})$ time and space.

Main contribution. Newton-CG for MDMC

$$
\begin{aligned}
& \underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta \\
& \text { subject to } \Theta_{i, j}=0 \quad \text { wherever }\left(S_{\lambda}\right)_{i, j}=0
\end{aligned}
$$

1. Embed nonchordal sparsity graph G of S_{λ} within a chordal graph G-tilde.

$$
S=L L^{T}
$$

Main contribution. Newton-CG for MDMC

$$
\begin{aligned}
& \underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta \\
& \text { subject to } \Theta_{i, j}=0 \quad \text { wherever }\left(S_{\lambda}\right)_{i, j}=0
\end{aligned}
$$

2. Pose as optimization problem over the fill-in

$$
\begin{aligned}
& \operatorname{minimize} \operatorname{tr}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta \\
& \text { subject to } \Theta_{i, j}=0 \quad \forall(i, j) \in \tilde{G} \backslash G \\
& \Theta \in \mathbb{S}_{\tilde{G}}^{n}, \quad \Theta \succ 0
\end{aligned}
$$

Most sparsity constraints show up here

Extra edges added to to make graph chordal

Optimization problem over the cone of sparse semidefinite matrices.

Main contribution. Newton-CG for MDMC

$$
\begin{aligned}
& \underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta \\
& \text { subject to } \Theta_{i, j}=0 \quad \text { wherever }\left(S_{\lambda}\right)_{i, j}=0
\end{aligned}
$$

3. Solve the dual problem

Self-concordant barrier on the cone of sparse matrices

$$
\operatorname{maximize}-f_{*}\left(S_{\lambda}+Y\right)
$$

$$
\text { subject to } Y \in \mathbb{S}_{\tilde{G} \backslash G}^{n}
$$

Edges added to
to make graph chordal
Self-concordance guarantees ε-accuracy in $\mathrm{O}(\log \log (1 / \varepsilon))$ Newton iterations.

Main contribution. Newton-CG for MDMC

$$
\begin{aligned}
& \underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}\left(S_{\lambda} \Theta\right)-\log \operatorname{det} \Theta \\
& \text { subject to } \Theta_{i, j}=0 \quad \text { wherever }\left(S_{\lambda}\right)_{i, j}=0
\end{aligned}
$$

4. Solve Newton direction using conjugate gradients

$$
\begin{aligned}
& \operatorname{maximize}-f_{*}(S+Y) \\
& \text { subject to } Y \in \mathbb{S}_{\tilde{G} \backslash G}^{n}
\end{aligned}
$$

Main Theorem (Informal). CG converges to ε accuracy in $O(\log (1 / \varepsilon))$ iterations

Each CG iteration costs $\mathrm{O}(\mathrm{n})$ time and $\mathrm{O}(\mathrm{n})$ memory. soft-O(1) CG iters. over soft-O(1) Newton iters. QED.

Numerical results on banded graphs

- Synthetic $\Theta=\Sigma^{-1}$ with banded sparsity pattern
- Off-diagonals [-1,+1], corrupted to zero with $p=0.3$
- Diagonals set to sum of off-diagonals plus one
- Solve MDMC on this sparsity pattern

Numerical results on real-life graphs

- Synthetic $\Theta=\Sigma^{-1}$ from real-life graphs.
- Off-diagonals [-1,+1], corrupted to zero with $\mathrm{p}=0.3$
- Diagonals set to sum of off-diagonals plus one
- Estimate $\boldsymbol{\Sigma}$ from 5000 i.i.d. samples from $\mathbf{N}(\mathbf{0}, \boldsymbol{\Sigma})$

Conclusions

- Graphical lasso estimates covariance matrix assuming that its inverse is sparse. Applications in finance and neuroscience.
- Nice theory, most useful in high-dimensional setting.
- This paper. Fast algorithm for graphical lasso
- O(n) time and space.
- Numerical results. Solve $\mathrm{n}=200 \mathrm{k}$ problem in 70 minutes on a laptop.
- Next steps. Benchmark statistical performance for recovering ground-truth.

$\hat{\Theta}=\underset{\Theta \succ 0}{\operatorname{minimize}} \operatorname{trace}(S \Theta)-\log \operatorname{det} \Theta+\lambda \sum_{i \neq j}\left|\Theta_{i, j}\right|$.

Thank you! - Poster \#1

Richard Y. Zhang ${ }^{1}$, Salar Fattahi ${ }^{1}$, Somayeh Sojoudi ${ }^{2}$
${ }^{1}$ Industrial Engineering and Operations Research
${ }^{2}$ Electrical Engineering \& Computer Sciences
University of California, Berkeley
\{ryz, fattahi, sojoudi\}@berkeley.edu

