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Abstract—High penetrations of distributed renewables can
dramatically increase uncertainty in the transmission system,
making small-signal stability verification far more challenging. In
this paper, we examine the impact of generating 30% of the power
in the IEEE 118 bus test network with 118 distributed renewable
sources, and show the inadequacy of sampling approaches to
stability analysis. We show that multipoint local optimization
can find less stable scenarios that are easily missed by sampling.
In addition, we show that stability verification (or certification)
is computationally tractable, but as yet, only by linearizing and
dimension-reducing the parametric variation.

I. INTRODUCTION

High penetrations of renewable energy resources will intro-
duce unprecedented uncertainty to the power system, making
stability analysis considerably more challenging. Previous
studies have generally concurred that–assuming that sufficient
inertia remains on the system–high penetrations of renewables
generation would not significantly worsen small-signal stabil-
ity in the average-case scenario [1], [2]. Considerably less is
known in the worst-case scenario, whether it is possible for
renewables to significantly impact stability, and how might
such issues manifest.

One popular approach is to apply statistical, or “Monte
Carlo” techniques, to the study of small-signal stability in the
presence of uncertainty [3], [4]. By sampling the stability of
selected or random scenarios, and by assuming a particular
underlying distribution, a prediction interval can establish that
stability is expected for, say, 99% of all possible scenarios.
However, such predictions can often mislead if the impact of
significant outliers are not adequately considered.

In this paper, we present a case study based on the IEEE
118-bus test system, in which 30% of the power is generated
by distributed renewable generation added to each of the 118
buses, in order to highlight the challenge presented by outliers,
and the importance of a certification approach. Statistical anal-
ysis shows the system to be stable and unassuming on average,
with the boundary to instability located more than 6 standard
deviations away. But using local optimization, we were able to
find 100 unstable or nearly unstable scenarios, suggesting that
outlier scenarios may be far more common than first appeared.
Finally, a stability certificate for a low-dimensional, linearized
version of our system model is computed, bounding the worst-
case instability by a figure that is not too much worse than
the unstable scenarios found via local optimization.

II. THEORETICAL & COMPUTATIONAL TOOLS

A. Eigenvalue Analysis

The time-domain dynamics of power systems are modeled
using differential algebraic equations,

ẋ = f(x, y), 0 = g(x, y), (1)

in which x, y are state and algebraic variables, and f, g
are nonlinear but smooth, differentiable functions. The point
(x0, y0) is an equilibrium point if

f(x0, y0) = 0, g(x0, y0) = 0,

and physically corresponds to a power flow solution over
the network, i.e. the balancing of generated, consumed and
transmitted complex power at every bus.

Small-signal stability at (x0, y0) can be analyzed by exam-
ining the linear differential-algebraic system,

ξ̇ = Aξ +Bη, 0 = Cξ +Dη, (2)

where ξ = x−x0 and η = y−y0, and the matrices A,B,C,D
are the Jacobians of the functions f and g, evaluated at
(x0, y0). The matrix D is nonsingular except in cases of
voltage collapse, so stability can be equivalently assessed by
examining the state-space model

ξ̇ = (A−BD−1C)ξ. (3)

It is common to quantify stability with a decay rate, in units
of “fraction reduction per second”, by considering the lightest-
damped eigenmode. Specifically, for ẋ = Mx, the damping
rate, α, is defined as

α(M) = −max
i

Reλi{M}. (4)

A state-space model will asymptotically decay as
exp(−tα(M)) assuming α(M) > 0, and is unstable if
α(M) ≥ 0 1.

1The damping ratio is a commonly-used alternative for quantifying stability,
but can be treated similarly.



B. Parametric Uncertainty & Statistical Analysis

A consequence of the uncertainty introduced by renewables
is that the functions f, g in (1) are themselves uncertain. In
turn, this implies that the equilibria of f, g are uncertain,
as are their Jacobians A,B,C,D as evaluated about each
equilibrium.

The uncertainty can be made deterministic through param-
eterization. For example, our latter case study introduces an
uncertain parameter ui for each renewable source considered,
and uses it to scale the power output at that source. While the
values of the parameters u ∈ Rm are themselves uncertain,
the relationship between the parameters and the corresponding
model functions fu and gu is deterministic, as is the solution
to the power flow equations and the Jacobians evaluated at the
equilibrium, written Au, Bu, Cu, Du.

Our objective is to analyze the decay rate over all possible
choices of the uncertain parameter u. Mathematically, the set
of all possible decay rates D ⊂ R is defined

D = {α(Au −BuD
−1
u Cu) : 0 ≤ ui ≤ 1 ∀i ∈ {1, . . . ,m}}.

While analyzing D explicitly is very difficult, collecting
samples from it is relatively straightforward, e.g. by selecting
u from a uniform distribution. With enough samples, quanti-
tative statements about stability can be made using statistical
analysis. For example, the stability of the “average uncertain
scenario” can be determined. Prediction intervals can also be
computed by assuming an underlying distribution.

C. Local Optimization

Statistical approaches can never be conclusive about worst-
case behavior, but in this case study, the statistic approach is
surprisingly misleading. Using the same notation as before,
our objective is to compute the least-stable element of minD ,
equivalent to the constrained optimization problem

minimize α(Mu) (5)

subject to Au −BuD
−1
u Cu =Mu

0 ≤ ui ≤ 1 ∀i ∈ {1, . . . ,m}.

The problem is nonlinear, nonconvex, nonsmooth and indeed,
very ill-behaved. But finding locally optimal solutions is easy:
a strictly feasible initial point can be incrementally improved,
e.g. using a trust-region quasi-Newton’s method, until no
further progress can be made. This suboptimal, local approach
is ubiquitous in controller synthesis [5].

In the context of stability analysis, any insufficiently stable
scenario found through local optimization immediately tells
us that not all uncertain scenarios are acceptable; the worst-
case is at least as bad the one found through optimization.
However, the opposite is not necessarily true. Just because
local optimization is unable to find an unstable scenario does
not mean that one does not exist. We can only increase our
chances of catching the worst-case by restarting the search at
different initial points.

III. CASE STUDY DESCRIPTION

In this paper, we study the IEEE 118 bus system in the con-
text of achieving ~30% distributed renewable penetration, and
the potential small-signal stability issues that may arise. First,
three conventional generators (located at buses 10, 25 and 89)
are retired from the system. Then, the displaced generation
capacity (around 1,277 MW) is compensated by installing
renewable generation at each of 118 buses throughout the
system. In the “base case” scenario, the amount of distributed
generation allocated to each bus is proportional to the size of
the existing load, in order to reflect the fact that larger load
centers tend to accrue more renewables.

The objective of our study is to simulate the uncertainty
associated renewables generation, and to quantify its impact
on system-wide small-signal stability. To this end, we param-
eterize the uncertainty of the renewable generation at each bus
with its own uncertain variable, ui, which ranges from 0 to
2. Each parameter acts as a “multiplier” for the production
at the corresponding bus, so a value of u5 = 1.2 would set
the renewable generation at bus 5 to output 20% more power
than its nominal amount in the “base case”, whereas a value
of u20 = 0 would shut off the renewable generation at bus 20
altogether.

A. System Model

The IEEE 118-bus model is a classic test case, containing
118 buses, 186 lines, and 54 generators. Descriptions of the
system are widely available, e.g. from [6]. The system contains
a large number of generators, but only 17 of which are actively
generating more than 10 MW power. To simplify the analysis,
the remaining 37 generators are taken out of service, but
their respective buses are left intact. Each time power flow
is solved throughout the system, reactive power limits at each
generator are enforced to prevent the obvious instability caused
by sinking too much reactive power into a generator.

1) Generators: The base power for each machine is com-
puted by taking the Pmax, Qmax and Qmin figures quoted in
the power flow case file, and assuming that the capability of
each machine is to produce up to 1.0 per-unit real power,
0.8 per-unit reactive power in over-excitation, and 0.6 per-
unit in under-excitation. These are typical figures for large,
transmission-level synchronous machines [7].

The dynamical model for each generator is constructed
from a standard round-rotor generator model (GENROU), a
standard DC exciter model (DC1A [8, Sec. 5.1]), alongside a
suitably designed voltage compensator [8, Sec. 4]. Governors
are generally considered to be too insensitive to initiate small-
signal events, so are not modeled for this study. Identical per-
unit parameters are rescaled to different machine base powers.

2) Loads: Loads are modeled as a mixture of 70% constant-
impedance and 30% constant-current, with negligible dynam-
ics. The constant-impedance portion models lights, heaters and
appliances, as well as the various transformers and lines in
the conduction path, while the constant-current portion models
induction motors, which are widespread for industrial loads.



Table I: Decay rate sample statistics (units of 10−2/s)

Sample size Mean Median Mode Std. Dev. Min Max
60 3.05 3.13 3.87 0.433 1.81 3.86

600 2.99 3.02 4.28 0.421 1.43 4.28
6000 2.98 3.00 4.32 0.439 0.900 4.32

60,000 2.99 3.00 4.63 0.437 0.746 4.63
360,000 2.99 3.00 4.64 0.437 0.584 4.64

Table II: Decay rate prediction intervals (units of 10−2/s)

Sample size Prediction Confidence
99% 99.9% 99.99% 99.999%

60 [1.89, 4.21] [1.54, 4.56] [1.23, 4.87] [0.94, 5.16]
600 [1.90, 4.08] [1.60, 4.38] [1.34, 4.64] [1.11, 4.87]

6000 [1.85, 4.11] [1.54, 4.42] [1.27, 4.69] [1.04, 4.92]
60,000 [1.86, 4.12] [1.55, 4.43] [1.29, 4.69] [1.06, 4.92]

360,000 [1.86, 4.12] [1.55, 4.43] [1.29, 4.69] [1.06, 4.92]

3) Distributed Renewables: The vast majority of renewable
resources interface with the power system through power
electronics, which have near-instantaneous dynamics that can
be neglected for the purposes of a transmission-level simu-
lation. In the presence of power-point tracking mechanisms,
these renewables will act as constant real power injections;
without power tracking, they will behave like direct-axis
current sources. In this paper, the renewable generation at
each bus is modeled as 90% real power injections and 10%
direct-axis current injections. Since there is no mandate in
the U.S. for small, distribution-level renewables to provide
reactive support, we simply assume that their reactive power
contributions are negligible.

IV. STATISTICAL ANALYSIS

Our study begins by collecting samples of the decay rate,
by drawing the uncertainty parameters u from a uniform
distribution. Results are shown in Tab. I, and by assuming
an underlying normal distribution, prediction intervals are
computed for each sample size in Tab. II. The histogram /
cumulative distribution function for the largest sample size is
shown in Fig. 1.

Results show that an “average” uncertain scenario is rela-
tively unassuming, admitting a decay rate of ~3% per second,
corresponding to a damping ratio of around 1-2%. On average,
a high penetration of distributed renewables does not appear
to significantly impact system stability, at least within the
modeling assumptions contained in this paper. This result
concurs with studies performed on real power systems [1],
[9].

However, examining the statistics closer reveals consider-
able skew and kurtosis (i.e. “long-tailed-ness”) in the distribu-
tion. Table I shows that the mode differs considerably from the
mean and median for all sample sizes. All five intervals predict
around a 1 in 100,000 chance for a scenario to admit a decay
rate being below 1% per second, but such scenarios are found
in practice within just 6000 samples. While the distribution
may appear to be normal at first glance, the results show that
outlier cases are far more common, and this can lead to large
errors when making predictions.
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Figure 1: Distribution of decay rate over 360,000 samples: (a)
histogram; (b) cumulative probability distribution.

V. UNSTABLE SCENARIOS VIA LOCAL OPTIMIZATION

We proceed to use local optimization techniques to probe
at the worst-case scenario. Since the problem is highly non-
convex, numerous local minima will be found, so the pro-
cedure should be repeated with different, randomized initial
points. After 100 runs of local optimization performed using
fmincon in MATLAB, 100 locally least-stable solutions are
found. These solutions are visualized in Fig. 2, as the 0%,
25%, 50%, 75% and 100% quantiles for the u values allocated
to each system bus. The solutions span a wide combined range,
but many of them are closely gathered towards a median “bad-
case scenario”. As shown in Fig. 3, all 100 scenarios are
considerably less stable than those sampled in the previous
section, deviating a remarkable 6-7 standard deviations from
the mean.

It is important to validate that the instabilities found cor-
respond to real, physical phenomena, and are not simply a
manifestation of the optimizer exploiting modeling errors. We
provide an illustration for the most unstable of the 100 solu-
tions, which has an eigenvalue pair at λ = 0.002 ± 3.9512j.
The instability would manifest as a 0.6 Hz oscillation that
grows in magnitude at a rate of 0.2% per second, or about 12%
per minute. Computing the participation factors [10] reveals
that only machine rotor speeds and rotor angles participate in
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Figure 2: Solution distribution for 100 runs of local opti-
mization. Black, solid: median; black, dashed: 25% and 75%
quantiles; gray, dotted: 0% and 100% quantiles.
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Figure 3: Histogram of damping rates for 100 locally least-
stable scenarios found via local optimization. The least stable
scenario has a damping rate of −0.002s−1, and branch-and-
bound on the order-reduced, linearized approximation predicts
α ≥ −0.0124s−1 in the neighborhood of these scenarios.

the unstable modes. The most affected machines at bus 25
and bus 111, which are located at opposite extremes of the
network. These are all tell-tale signs of interarea oscillation;
indeed the suspicion is confirmed using time-domain simula-
tion, as shown in Fig. 4.

VI. STABILITY GUARANTEES

In the previous section, local optimization was successful in
catching several unstable or nearly-unstable outlier scenarios.
But both local optimization and statistical analysis will in-
evitably fall short in making conclusive predictions about the
true worst-case scenario. Both methods leave us wondering
whether there is a significantly less stable scenario that is
simply overlooked.

To this end, an important idea from robust control theory is
the stability certificate, which provides a lower-bound on the
decay rate for all uncertain scenarios of a given model, i.e.

α ≤ minD , (6)

where D was previously defined in Section II. Essentially,
the stability certificate guarantees a minimum amount of
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Figure 4: Time domain simulation of the rotor angles after a
small disturbance. The oscillations are undamped and grow
slowly in magnitude.

damping for every eigenmode of every uncertain scenario.
A certificate for α > 0 immediately guarantees that every
uncertain scenario–even the worst-case–will remain stable.

Stability certificates are difficult to compute, often requiring
computational effort that grows exponentially with the size and
complexity of the given model. Also, the predictions made can
be conservative, and this conservatism can adversely impact
their usefulness (e.g. a certificate for α = −∞ would be
relatively meaningless). The easiest models to work with are
those whose Jacobian matrices Au, Bu, Cu, Du have a linear
dependence on the uncertain parameters–a structure sometimes
known as linear parameter varying (LPV). In these cases, rel-
atively nonconservative stability certificates can be computed
for models containing up to 100 states and 10 dimensions
of uncertainty, and more dimensions of uncertainty can be
accommodated at the expense of increasing conservatism [11],
[12].

The problem is significantly more difficult for models with
a nonlinear dependence on uncertain parameters. Using sum-
of-squares methods, stability certificates can be constructed for
these models containing up to 10-20 combined dimensions of
states and dimensions [13].

A. Low-dimensional LPV Approximation

The model developed in this paper has a nonlinear depen-
dence on the uncertain parameters, due to the need to resolve
power flow for each new choice of renewables production. It
also contains 97 state variables and 118 uncertain parameters,
which puts sum-of-squares methods entirely out of reach.
Instead, we proceed to approximate the nonlinear parameter
dependence by linearizing about an operating point, thereby
yielding an LPV model. The physical intuition is to replace the
a.c. power flow equations with the “d.c. power flow” analogs.
Such an approximation is widespread in power systems, and
are used to formulate optimal power flow [14] and unit com-
mitment [15] problems as linear and mixed integer programs.

Since all of the unstable scenarios found via local opti-
mization have similar values of u, it makes sense for our LPV
model to be most accurate over the values of u covered by



0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Branch & Bound Iteration [#]

U
n

p
ru

n
e

d
 s

e
a

rc
h

 s
p

a
c
e

 [
%

]

Figure 5: Progress of branch & bound as applied to the
linearized model. Each iteration took between 2,000-4,000 s
on a 16-core Intel Xeon E5 CPU.

the unstable points found via local optimization. Following
this, the LPV approximation is constructed by expanding
about the median of the 100 outlier scenarios found via
local optimization, and estimating each gradient using centered
finite differences. The resulting LPV approximation has 118
uncertain parameters, most of which are redundant in de-
scribing the underlying uncertainty. Applying order reduction
techniques, we find that just 7 dimensions of uncertainty (i.e.
principal components) are needed to capture the behavior of
the LPV model to an approximation error of below 1%.

B. Computation of Lyapunov Certificates

Vertex-based Lyapunov stability certificates [12, Eqn. 5.8]
are computed for the LPV model with 7 dimensions of
uncertainty, and a branch-and-bound scheme is used to refine
the conservatism of the bound [16]. The final result is shown
alongside the decay rates of the unstable scenarios found
via local optimization in Fig. 3. The certificate predicted a
decay rate lower-bound of -0.0124/s, suggesting that the worst-
case scenario should not be too much worse than the outlier
scenarios already found using local optimization.

Despite the use of a reduced LPV approximation, the
stability certificate still required a significant amount of com-
putational effort. Branch-and-bound converged in 19 iterations
(shown in Fig. 5), but each iteration required the solution of a
conic optimization problem with 972 = 9409 primal decision
variables and 27 ·972 ≈ 1.2×106 dual decision variables. This
took around an hour each time, even when using application-
specific, custom-tailored codes on expensive hardware, and the
combined running time for all 19 iterations was around a full
day.

VII. CONCLUSION

This paper provides a case study to highlight the importance
of stability verification/certification techniques in analyzing the
impact of distributed renewables on the small-signal stability
of the transmission system. Statistical methods can underes-
timate the impact of outlier scenarios, some of which can be
found using local optimization, but only a stability certificate

can exhaustively guarantee that all outlier scenarios will re-
main stable. In practice, the computational power required
to compute the stability certificates is formidable, even for
the linearized, order-reduced approximation to a small 118-
bus system. Further progress in theoretical and computational
methods are needed to scale theory to realistic-sized problems,
which may contain tens of thousands of buses and thousands
of generators. This is an important area of future research.
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